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thankful to the faculty of Instituto Superior Técnico for providing me with knowledge to the best of their

ability for the past five years. To my parents, a very special thank you for always doing their best to

provide for me and allowing me to follow my dreams. A very big thank you to my girlfriend for always

supporting me and keeping me motivated.

v



vi



Abstract

As technology continues to evolve, classic computers have reached the point where the components

can’t get any smaller, leading to the development of alternative approaches like quantum computing.

Quantum computers are a lot more powerful than classical ones, as unlike the classic bit, the quan-

tum bit can be in more than two states allowing quantum computers to process several states at the

same time. The aim of this Thesis is delving into the world of quantum computing by analysing ways

to manipulate the state of qubits, and from there, build up to the implementation of quantum algorithms

and its implementation in a quantum computer. The algorithm of choice for this Thesis is the Shor’s

algorithm for factoring large prime numbers, selected due to its current relevance, and in particular it

uses the Quantum Fourier Transform (QFT), which is the key for many quantum algorithms. Algorithms

are developed using Qiskit, an open-source software development kit founded by IBM Research, that

runs on Python. To provide a better insight on the algorithms’, a step by step design shows the paral-

lelism between the mathematical equations behind the algorithms and the corresponding quantum gate.

This Thesis also features a semi-classical implementation of Shor’s algorithm that shows how classical

computation can be used to improve quantum computing. Due to physical limitations of the quantum

computers available for simulations, not all quantum circuits were tested on a real quantum device as it

was originally intended.
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Resumo

À medida que a tecnologia continua a evoluir, os computadores clássicos chegaram ao limite de com-

pressão dos componentes, o que levou ao desenvolvimento de alternativas como computação quântica.

Os computadores quânticos são consideravelmente mais potentes que os computadores clássicos; ao

contrário do bit clássico, o bit quântico pode existir em mais do que dois estados, permitindo que os

computadores quânticos processem múltiplos estados ao mesmo tempo. O objetivo desta Tese é explo-

rar o mundo da computação quântica analisando formas de manipular o estado de qubits, e, partindo

dessa análise, desenvolver e implementá-los em computadores quânticos. O algoritmo selecionado

esta Tese foi o algoritmo de Shor para a factorização de grandes números primos. Este algoritmo foi se-

lecionado devido à sua importância e relevância , e em particular, pelo uso da Transformada de Fourier

Quântica, que é a chave de inúmeros outros algoritmos. Estes algoritmos são desenvolvidos com re-

curso a Qiskit, uma kit de desenvolvimento de software criado pela IBM, que corre em Python. Para

proporcionar uma melhor análise destes algoritmos, estes serão implementados passo a passo recor-

rendo ao paralelismo entre as equações matemáticas que os formam e a correspondência em portas

quânticas. Este Tese apresenta também uma versão semi-clássica do algoritmo de Shor, realçando

como a computação clássica pode ser utilizada para complementar a computação quântica. Devido a

limitações dos computadores quânticos disponı́veis, nem todos os algoritmos puderam ser testados em

sistemas fı́sicos.

Palavras Chave

Computação quântica; Transformada de Fourier Quântica; Algoritmo de Shor; Qiskit.
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1.1 Motivation

Since the early 20th century when the atom was studied for the first time, quantum mechanics has been

studied as a way to define Nature as atoms don’t obey the traditional laws of physics. Quantum particles

are capable of teleportation and even exist in two places at the same time - quantum entanglement.

Classical computation has evolved from computers with the size of a room to day to day common

objects persons can carry on themselves, with chips containing millions of transistors as small as a

fingernail. However, as technology continues to advance the more transistors are needed and unfor-

tunately, they are already as small as they can get, what lead companies to start investing in other

forms of computing approaches and technologies, like parallel computation and, more recently quantum

computation [1].

Quantum computation is a lot more powerful than classical computation. Unlike the classical bit

which can only be in a binary state (’0’ or ’1’), the quantum bit - qubit - can be in an infinite number

of states besides those. This phenomena is denominated quantum superposition and allows quantum

computers to process multiple states at the same time, while the classical computer can only compute

them one at a time. Quantum supremacy, a theory that any and all limits set the classical computation

can be surpassed by quantum computers, has been demonstrated by Google and a team of physicists

from the University of California Santa Barbara [2].

Does this mean that once quantum computers develop further classical computation will become

obsolete? No, this is unlikely to happen since the common user does not need or can use that much

computational power. However, the launch of commercial quantum computers would have a huge im-

pact, namely on current cryptography. Most encryption technology relies on the fact that, even knowing

a way to, classical computers take a very long time to decipher keys, like the problem of finding the prime

factors of a very large number which is the base for RSA encryption. Quantum computers however can

perform this task efficiently, and when they get powerful enough to do it for very large numbers they will

pose a threat to cybersecurity.

At the time of writing, many companies are already developing quantum computers, like IBM’s Quan-

tum One. Their goals are to isolate qubits in a controlled quantum state, which can be achieved, for

instance, by cooling atoms to temperatures close to 0K. Another issues are that quantum computation

is probabilistic and needs to be run many times, and quantum entanglement is not easily achievable

making many computers to only have some qubits entangled, this means that there must also exist ad-

vanced compilers capable of mapping the computation qubits used in quantum gates to physical qubits

that are entangled, which helps simulate a system where all the qubits are entangled. Even so, a team of

physicists from Harvard-MIT developed a programmable quantum simulator composed of 256 qubits [3].

Therefore, since quantum computers already exist, and some are available for public use, the research

object of this master thesis will be on developing and running an algorithm on a quantum computer.

2



1.2 Objectives

The aim of this Thesis is delving into the world of quantum computing given the growing rate and im-

portance of quantum computation and information, and hopefully inspire other MSc and PhD students

to continue researching in this area.

The present research aims to operate with quantum computation. Taking these points into account,

them main objectives of this study are, in accordance with the order below:

• Analyse ways to manipulate the state of a single quantum bit;

• Analyse of how to use single qubit manipulation to build quantum circuits;

• Develop an algorithm;

• Simulate a system on a quantum simulator and on a real device.

1.3 Outline

This Thesis is organized into six prime chapters. This first chapter is an introduction to the objects of

study containing the motivation behind the topics and the fixed objectives. The second chapter covers

an overview on the history of quantum computation and the basic operations on quantum bits. It also

provides information on how to use basic operations to build circuits. On the third chapter, the chosen

algorithms and quantum computers are presented. Fourth chapter provides a circuit for the Quantum

Fourier Transform and its application on the domain of quantum computing. On chapter five, the algo-

rithm in study in this thesis is described along with it’s quantum implementation. Lastly, the sixth chapter

contains the conclusions of this study as well as suggestions for possible future work.
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Created in the early 1920s, the theory of quantum mechanics, a mathematical framework or set of

rules for the construction of physical theories, serves as base for the creation of quantum computation

and quantum information with one of the goals of sharpening the human mind’s intuition to the rules

of quantum mechanics. For instance, in the 1980s, there was a theory of whether or not faster than

light communication was possible, based on the possibility of cloning a quantum state. However, the

impossibility of cloning quantum information - something easily done in a classical computer- gave origin

to the no-cloning theorem [4].

Prior to the 1970s, quantum mechanics were mostly applied to try and control an enormous amount

of quantum systems having no direct access to any of them, nevertheless, many techniques to control

single quantum systems have been developed since then. This was a very important step to quantum

computation and quantum information because by probing this new regime of Nature, new and unex-

pected phenomena were discovered, granting humans more control over single quantum systems which

allowed them to extend it to a more complex one and discover applications to quantum computing and

quantum information.

Even so, why is quantum computation needed when classical computation is already well developed

and constantly evolving? Moore’s Law describes that the number of transistors in a dense integrated

circuit doubles roughly every two years and, as components get smaller and smaller quantum effects

begin to interfere with their functioning. One possible solution for the problem posed by the eventual

failure of Moore’s Law is moving to a different computation paradigm, such as the one provided by

quantum computation, and, even if a classical computers can be used to simulate a quantum computer,

it is impossible to do so in an efficient manner. Thus, quantum computers offer an essential speed

advantage over classical computers, and this speed advantage is so significant that many researchers

believe that no conceivable amount of progress in classical computation would be able to overcome that

gap.

One of the great early challenges of quantum computation and quantum information was the fact that

the effects of realistic noise must be taken into account in evaluating the efficiency of a computational

model. This issue was overcome by the development of a theory of quantum error-correcting codes and

fault-tolerant quantum computation which in principle allows it to tolerate a finite amount of noise.

In 1985 David Deutsch attempted to define a computational device that would be capable of effi-

ciently simulate an arbitrary physical system and because the laws of physics are quantum mechanic,

Deutsch was led to define the conception of a quantum computer that enabled a challenge to the strong

form of the Church-Turing thesis [5]. Deutsch considered the possibility of a quantum computer capable

of efficiently solving computational problems, which have no efficient solution on a probabilistic Turing

machine, and constructed an example suggesting that quantum computer might have more computa-

tional power than classical computers. This first step was then improved in the subsequent decade by

6



many others, leading to the demonstration, by Peter Shor in 1994, that two very important problems -

the discrete logarithm problem and finding the prime factors of an integer -, could be efficiently solved

on a quantum computer.

At about the same time, people were developing Richard Feynman idea, that there were essential

difficulties in simulating quantum systems on classical computers, and that building a computer based

on the principles of quantum mechanics would overcome them [6]. This lead several research teams to

show that was possible to use quantum computers to efficiently simulate systems that have no known

efficient simulation on a classical computer [7,8].

To culminate these development, in 1995, Ben Schumacher defined the quantum bit, commonly

known as qubit, as a tangible physical resource [9].

2.1 The Qubit

The quantum bit, or qubit, is an abstract mathematical object analogous to the bit and, just like the bit,

it can be realized as an actual physical system. However, being treated as abstract entities allow the

creation of general theories independent of a specific system for realization.

Just like classical bits have states, 0 or 1, quantum bits also have the states |0〉 and |1〉 which are

represented using the Dirac notation, also known as Bra-ket notation. This notation uses bras(’〈|’) and

kets(’|〉’) to represent vectors. Taking a, b ∈ C2 as example, it is possible to write their representation

using the Dirac notation,

|a〉 =
(
a1
a2

)
,

〈b| =
(
b∗1 b∗2

)
,

〈b|a〉 = a1b
∗
1 + a2b

∗
2,

|a〉〈b| =
(
a1b
∗
1 a1b

∗
2

a2b
∗
1 a2b

∗
2

)
.

(2.1)

However, the main difference between qubits and classical bits is that qubits can be in other states

other than |0〉 or |1〉 and, it is also possible to form linear combinations of states, which are often defined

as a superposition of states. Even so, the states |0〉 and |1〉 are known as the computational basis states

and a state not in any of these two is in a superposition of both, which can be written as

|ψ〉 = α |0〉+ β |1〉 , (2.2)

where the numbers α and β are complex numbers. Quantum mechanics however, define that when

measuring a qubit the only possible outcomes are the computational basis states, and as such, when

7



measuring a state in superposition the only possible results are either |0〉, with probability |α|2, or |1〉,

with probability |β|2, which ultimately implies that |α|2+ |β|2 = 1, since the probabilities must add to one.

When measuring a qubit, it is only possible to measure the difference in phase between |0〉 and |1〉 and

not the global phase of the qubit. This means that, instead of using two complex numbers, α and β can

be real numbers if a term representing the relative phase between |0〉 and |1〉 is added to the definition

of the state, resulting in

|ψ〉 = α |0〉+ eiϕβ |1〉 , α, β, ϕ ∈ R. (2.3)

Since α and β are now real numbers, |α|2 + |β|2 = 1 can be simplified to
√
α2 + β2 = 1. Using the

trigonometric identity
√
sin2 x+ cos2 x = 1 on this equality allows α and β to be described by a single

variable θ,

α = cos
θ

2
, β = sin

θ

2
θ ∈ [0, π]. (2.4)

Replacing α and β from equation 2.3 with these new values results in

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 . (2.5)

This equation defines a point on a three-dimensional unit sphere called Bloch sphere, represented in

figure 2.1. The Bloch sphere is used to represent a qubit’s state however there is no generalization of it

for multiple qubits.

Figure 2.1: Bloch sphere [10]

Looking at figure 2.1 it is noticeable that the poles on the z-axis correspond to the basis states |0〉

and |1〉. All the six poles from the Bloch sphere have their own representation as state,

8



z-axis→

{
|0〉 θ = 0, ϕ arbitrary
|1〉 θ = π, ϕ arbitrary

,

x-axis→

{
|+〉 θ = π

2 , ϕ = 0

|−〉 θ = π
2 , ϕ = π

,

y-axis→

{
|+i〉 θ = π

2 , ϕ = π
2

|−i〉 θ = π
2 , ϕ = 3π

2

.

(2.6)

It is also important to note that, when measuring a qubit in superposition the result will always be |0〉

or |1〉, and doing so will also cause the qubit to change the state, collapsing the superposition into the

measured state.

Even if the Bloch sphere can only be used to represent one qubit, just like in classical computation

if there are more than one qubits the number of states is also 2n (n being the number of qubits) so, for

a system with two qubits, the four possible states are |00〉, |01〉, |10〉 and |11〉. Also, a pair of qubits can

also be in superposition described as,

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 . (2.7)

Measuring this state will result in |x〉 (x=00, 01, 10 or 11 ) with probability |αx|2 where, just like for the

single qubit case, the sum of the probabilities equals one.

2.2 Basic Gates

Classical computation consists in applying changes to the state of classical bits using logic gates. Quan-

tum computation also consists on manipulating the state of qubits to manipulate and transport informa-

tion and, to do this, it makes use of quantum gates.

2.2.1 Single Qubit Gates

A single qubit gate is a quantum gate that when applied to a qubit affects it’s state in a predicted way.

Like the classical single bit gate NOT, that changes the binary value of the input, there exists a quantum

gate NOT that affects a qubit in a analogous way. However, to study the behaviour of a quantum gate,

one must always look at the superposition state (equation 2.2). It describes all possible states a qubit

can have, for instance |0〉 is just a superposition state where α = 1 and β = 0. So, consider the function

of the NOT gate, it makes a state that was 0 go to 1 and vice versa, this can also be thought as, when

measuring the state after applying a NOT gate, the probability of measuring 1 or 0 swapped. Thinking

about this behaviour in quantum computation, it means that, the quantum equivalent of a NOT gate,

would force
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α |0〉+ β |1〉 → β |0〉+ α |1〉 , (2.8)

which in the Bloch sphere corresponds to making a rotation of π around the x-axis.

This quantum version of the not gate is one of the Pauli gates, a set of single qubit gates that apply a

rotation of π around each of the axis, and whose name come from each of those axis. This means that

there are three Pauli gates, the Pauli-X gate, the Pauli-Y and the Pauli-Z gates. Each of these gates can

be described by a 2× 2 matrix.

Pauli-X = X =

[
0 1
1 0

]
Pauli-Y = Y =

[
0 −i
i 0

]
Pauli-Z = Z =

[
1 0
0 −1

] (2.9)

When applied to equation 2.2 these matrices define the transformations in equation 2.10.

Pauli-X : α |0〉+ β |1〉 X−→ β |0〉+ α |1〉

Pauli-Y : α |0〉+ β |1〉 Y−→ iβ |0〉 − iα |1〉

Pauli-Z : α |0〉+ β |1〉 Z−→ α |0〉 − β |1〉

(2.10)

The states corresponding to applying each Pauli gate to an uniform superposition state (α = β = 1√
2
)

are represented in the Bloch spheres on figure 2.2.

(a) (b) (c) (d)

Figure 2.2: Bloch sphere representation of states produced by the Pauli gates.(a) Initial state |+〉 = 1√
2
(|0〉+|1〉);(b)

State after rotation over x-axis 1√
2
(|0〉+ |1〉);(c) State after rotation over y-axis 1√

2
(i |0〉− i |1〉);(d) State

after rotation over z-axis 1√
2
(|0〉 − |1〉).

To simulate the results from figure 2.2 it was necessary to have a qubit in superposition. However, in

quantum computation the initial state of the qubits used in simulation is |0〉, which implies the existence

of a gate capable of transforming the basis state |0〉 into the uniform superposition state |+〉. This gate

is called the Hadamard gate and it is defined by
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Hadamard = H =
1√
2

[
1 1
1 −1

]
. (2.11)

From equation 2.11 one can easily see that applying an Hadamard gate to the basis states |0〉 and |1〉

will result in the states |+〉 and |−〉, respectively. That can also be shown through the Bloch spheres in

figure 2.3.

(a) (b)

Figure 2.3: Bloch sphere representation of states produced by the Hadamard gate.(a) Hadamard applied to |0〉
produce |+〉;(b) Hadamard applied to |1〉 produce |−〉.

Besides the already referred gates there are two more single qubits gates worth mentioning, the

Identity gate and the Phase gate, defined in equation 2.12

Identity = I =
[
1 0
0 1

]
,

Phase = P(ϕ) =
[
1 0
0 eiϕ

]
.

(2.12)

The Identity gate, does not impose any change to the state of the qubit, analogous to the hardware

specific operation NOP. The Phase gate, has a parameter ϕ corresponding to the rotation around the

z-axis the gate applies. The Phase gate can also be referred to as S-gate or
√
Z-gate if ϕ = π

2 , or as

T-gate or 4
√
Z if ϕ = π

4 .

Although every gate has its own symbol and definition, all of them can be generically defined by

U(θ, ϕ, γ) =

[
cos θ2 −eiγ sin θ

2

eiϕ sin θ
2 ei(ϕ+γ) cos θ2

]
, (2.13)

like the Hadamard and S-gate.

U(
π

2
, 0, π) =

1√
2

[
1 1
1 −1

]
= H,

U(0, 0,
π

2
) =

[
1 0
0 ei

π
2

]
= S.

(2.14)
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2.2.2 Multiple Qubit Gates

Having control over the state of one qubit is good, however, to do proper computation, qubits need to

interact with each other, just like in the basic logic gates from classical computation (AND, OR, XOR,

NAND, NOR). To accomplish this, in 1995 Chris Monroe [11], demonstrates the operation of a two qubit

”controlled-not” gate know as C-NOT. The matrix describing this gate’s functionality is given by

C-NOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.15)

The C-NOT gate acts on two qubits, a control qubit c and a target qubit t. If the control qubit is |0〉, the

target qubit state remains unchanged however, if the control qubit is |1〉, a Pauli-X gate is applied to the

target qubit. This interaction can be mapped by

|c〉 |t〉 C−NOT−−−−−−→ |c〉 |c⊕ t〉 . (2.16)

Summarized, the C-NOT gate stores in the target qubit the XOR of both qubits. This raises the

possibility of one being able to realize a quantum implementation of the classical logic gates. However,

all unitary quantum gates are always invertible and as such can always be inverted by another quantum

gate, contrary to the classic logic gates that are non-invertible. This means that it is impossible to build

quantum gates that replicate classical logic gates the same way the Pauli-X gate replicates the classical

NOT.

2.3 Quantum Circuits

Having defined some basic gates, the next step is to use them to build a quantum circuit, like the one in

the diagram of figure 2.4. Quantum circuit diagrams are analysed from left to right, each line represents

the evolution in time of a different qubit, represented top to bottom. A quantum register is a set of qubits

used to represent a variable and, each individual qubit of the register is named in the diagram next to

the correspondent line, as is the case of the variables |t〉 and |c〉 represented in figure 2.4. This qubits

are numerated according to the size of the register and the qubit corresponding to the LSB is the one

with index ’0’. So, reading the value stored in a quantum register is done bottom to top.

Some well-known quantum circuits, composed mostly by basic gates and C-NOTs, are commonly

treated as complex quantum gates. Since they are built using C-NOTs, the gates will be described using

two quantum registers, the control register |c〉 and the target register |t〉.

Analyzing the circuit from figure 2.4, which is composed by three C-NOT gates, an equation describ-

ing the behaviour of the circuit can be written. Naming the C-NOTs, C-NOT1, C-NOT2 and C-NOT3, left

12



Figure 2.4: Quantum circuit diagram to implement a swap gate.

to right the function applied by the circuit is given by

|c〉 |t〉 C−NOT1−−−−−−→ |c〉 |c⊕ t〉

|c〉 |c⊕ t〉 C−NOT2−−−−−−→ |c⊕ (c⊕ t)〉 |c⊕ t〉 = |t〉 |c⊕ t〉

|t〉 |c⊕ t〉 C−NOT3−−−−−−→ |t〉 |(c⊕ t)⊕ t〉 = |t〉 |c〉 .

(2.17)

This shows that this circuit swaps the values from the registers and as expected is known as the swap

gate.

Another complex gate that can be built using C-NOTs and basic gates is the controlled-Z gate, which,

as the name expresses, is a controlled version of the Pauli-Z gate. This gate operates on the fact that

applying a Z gate to |+〉 has the same effect of applying an X gate to |0〉, it flips the qubit. Since the

Hadamard gate takes |0〉 to |+〉, applying an Hadamard gate to the qubit, followed by a Pauli-X gate and

another Hadamard produces the same effect has a Pauli-Z gate, and so, to make a controlled version of

the Z gate it is enough to replace the Pauli-X gate by a C-NOT gate. The circuit describing this gate is

represented on figure 2.5.

Figure 2.5: Quantum circuit diagram to implement a controlled Z gate.

The equality described can be proven by analyzing the circuit of figure 2.5, assuming |c = 1〉 and |+〉
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|1〉 |+〉 H1−−→ |1〉 |0〉

|1〉 |0〉 C−NOT−−−−−−→ |1〉 |0⊕ 1〉 = |1〉 |1〉

|1〉 |1〉 H−→ |1〉 |−〉 ,

(2.18)

which shows that this circuit takes the target register from |+〉 to |−〉, applying the same changes as the

Pauli-Z gate. It is also important to notice that when |c = 0〉 the C-NOT gate does not make any change

leaving the circuit as HH = I.

Another gate that can be built in a similar way is the controlled Phase gate. As it can be seen in

figure 2.1, an arbitrary state |ψ〉 can be represented in the Bloch sphere by the amplitude of the angles

θ and ϕ and, in the same way the quantum gates can also be described by the transformations to those

angles. For instance, the C-NOT gate adds π to both θ and ϕ, and the Phase gate only adds the desired

phase to ϕ leaving θ unchanged. Using this representation, is possible to analyze the circuit from figure

2.6 and prove that it is in fact, a controlled Phase gate.

Figure 2.6: Quantum circuit diagram to implement a controlled Phase gate gate.

Using the |ψ〉 = |(θ, ψ)〉 notation to represent a state in the Bloch sphere, the circuit behaviour can

be describe, for |ψ〉 = |+〉 =
∣∣(π2 , 0)〉, as

|1〉
∣∣∣(π
2
, 0)
〉

Pϕ/2−−−→ |1〉
∣∣∣(π
2
,
ϕ

2
)
〉

|1〉
∣∣∣(π
2
,
ϕ

2
)
〉

C−NOT1−−−−−−→ |1〉
∣∣∣(π
2
,−ϕ

2
)
〉

|1〉
∣∣∣(π
2
,−ϕ

2
)
〉

P−ϕ/2−−−−→ |1〉
∣∣∣(π
2
,−ϕ)

〉
|1〉
∣∣∣(π
2
,−ϕ)

〉
C−NOT2−−−−−−→ |1〉

∣∣∣(π
2
, ϕ)
〉
.

(2.19)

For the case where the control qubit is |0〉 the C-NOTs do nothing and the Phase gates apply the inverse

of one another and as such apply the identity. This behaviour leads to the conclusion that the circuit

from figure 2.6 is indeed a controlled P gate.

Just as the C-NOT is a controlled X gate, there is a gate called the Toffoli gate that is essentially
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a doubly-controlled X gate, also known as CC-NOT. As expected, this gate functions exactly like the

C-NOT gate, however, instead of requiring one control qubit set to |1〉 to flip the target qubit, it requires

both control qubits to be set. A circuit to implement the Toffoli gate is represented in figure 2.7, an image

taken from [12], where the behaviour of the circuit is analysed.

Figure 2.7: Quantum circuit diagram to implement a Toffoli gate. Taken from [12].

Most of the circuits described in this section, are simply constructions that apply a controlled version

of a basic gate. However, the circuit in figure 2.8, is a controlled version of a quantum circuit, the

controlled Swap gate, also known as the Fredkin gate. Comparing the circuit in figure 2.4 with the one

in figure 2.8, the only difference between the two is that, for the Fredkin gate, the second C-NOT is

controlled. This means that, when the control bit is |c = 1〉 the circuit behaves like a normal swap gate,

swapping |t0〉 and |t1〉. When the control is |c = 0〉, the Toffoli gate does nothing leaving the circuit as

two sequential C-NOT gates that, since they have the same control and target qubit, which is equivalent

to applying the Identity gate.

Figure 2.8: Quantum circuit diagram to implement a Fredkin gate.
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As aforementioned, quantum computing will be implemented and tested tested on both real quantum

devices and high-end quantum simulators. This chapter provides information about the algorithms and

the quantum computer provider chosen as well as the reasoning behind those choices.

3.1 Algorithms

The choice of the algorithm that this Thesis is focused on was made taking into account the current

importance of the algorithm and its relevance for possible studies. One of the most important quantum

algorithms is Shor’s algorithm for factoring large numbers [13]. Number factorization as always taken

interest by investigators. The inability to efficiently do number factorization is one of the backbones of

modern cryptography, as such, the quantum implementation of Shor’s algorithm as been object of inten-

sive research. An added bonus of this algorithm is that it uses the Quantum Fourier Transform (QFT)

which is the key for many quantum algorithms. This way, instead of studying only the implementation of

a complex Shor’s Algorithm, this thesis will also focus on a simpler yet very relevant quantum circuit, the

QFT.

3.1.1 Quantum Fourier Transform

The discrete Fourier transform (DFT) is a mathematical transformation that converts a finite sequence

of equally-spaced samples into a function of frequency. This is very useful as it allows for problems with

no trivial solution in the time domain to be studied in the frequency domain, where a result could be

easier to achieve. The DFT can, for instance, be used to examine information encoded in the frequency

of a signal by calculating it’s spectrum or to determine a system’s frequency response facilitating the

analysis of the system in the frequency domain. Efficient algorithms to implement this transformation to

sequences are denominated Fast Fourier Transforms (FFT). The quantum Fourier transform (QFT) is

an efficient quantum algorithm analogous to the FFT, meaning that it applies the DFT on the quantum

mechanical amplitudes of a quantum state. Given the nature of the qubit, the QFT provides a way

to estimate phase, which only by itself is not something extremely valuable but when applied to other

algorithms can be used to solve very important problems, such as factorization and finding the number

of solutions to a search problem.

3.1.2 Shor’s Algorithm

In 1995, Peter Shor described a way to solve in polynomial time two problems thought to be unfeasible

on a classical computer [13]. At that time, the best factoring algorithm was the number field sieve [14],

requires exp
{
θ(n

1
3 log

2
3n)
}

operations to factor an n-bit integer. This algorithm scales exponentially with
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the size of the number being factored and so, as numbers get bigger, it quickly becomes impossible to

factor them, which makes factoring considered an intractable problem for classical computation. Shor’s

Algorithm however, can factor an n-bit integer with polynomial O(n2 log n log log n) number of operations

representing an exponential speed-up over it’s classical analogous. This is an important achievement

providing evidence of superior processing power of quantum computers compared to classical ones.

Modern cryptography, like the RSA public-key cryptosystem, which relies on being impossible to factor

the product of two large prime numbers, serve to prove from a practical standpoint the importance of

Shor’s Algorithm.

3.2 Quantum computers

In this Thesis is considered that, although Shor’s algorithm can factor big numbers, in practice today

we are talking about integers with 2048 bits, the size of keys adopted by RSA based cryptosystems.

The necessary resources to process such big numbers are not available physically in a quantum com-

puter. However, they can be simulated in high-end classical computers specifically designed to simulate

quantum circuits, referred to as quantum simulators.

The quantum computers and quantum simulators used in this Thesis to run circuits are part of IBM

Quantum Experience [15], a cloud application that allows users to program real quantum computers.

The first quantum computer presented by IBM was the IBM Q System One [16] which served as base

for the development of the other available quantum computers. System One was released with a twenty-

seven-qubit Falcon processor, which was later surpassed by the Hummingbird processor. This last

processor that provides sixty five qubits was unveiled by IBM alongside their roadmap for technology

scaling, where their goal of surpassing one thousand qubits by the year of 2023 was established [17].

IBM also provides a framework that allows users to run quantum circuits on their quantum computers.

This framework comes in the form of Qiskit [18], an open-source software development kit that provides

tools for the design and simulation of quantum programs founded by IBM Research that runs on Python.

Qiskit works like a descriptive programming language. The user starts by defining how many qubits

are present in the circuit, then he can apply a quantum gate to each qubit. The Python code in figure

3.1 uses Qiskit to describe a two qubit circuit: an Hadamard gate is applied to the first qubit and a

Pauli-X gate to the second, then a C-NOT gate controlled on the first qubit acts on the second. This

circuit schematic can be visualized using Qiskit’s draw method. This method performs the graphical

representation of the circuit’s diagram using matplotlib -a Python library for creating static, animated,

and interactive visualizations [19] -, as can be visualized in figure 3.2. Circuits built this way can then

be simulated on the user’s own device using Qiskit’s Aer simulators or on IBM’s quantum computers

and quantum simulators. Running quantum simulation on a personal device can be ill advised given the
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amount resources necessary to perform such task.

Figure 3.1: Code to implement a simple circuit using Qiskit.

Figure 3.2: Diagram of the circuit created using code for figure 3.1.

There are twenty-one quantum systems made available by IBM [20] ranging from one (Canary pro-

cessor) to sixty-five (Hummingbird processor) available qubits. However, only eight of these are available

for ordinary users. Of the eight available systems, one is composed of only one qubit while the other

seven are composed by five qubits. For these quantum computers, the quantum volume - a single

number metric that quantifies the largest random circuit of equal width and depth that the computer

successfully implements [21] -, is one for the single qubit system and eight, sixteen or thirty-two for the

remaining. Despite the amount of available qubits for simulations being low, IBM Q also provides five

high-performance simulators for prototyping quantum circuits and algorithms, and exploring their per-

formance under realistic device noise models [22] Simulators of different types: a five thousand qubit

Clifford simulator that only allows the use of Clifford group operations [23]; a one hundred qubit Matrix

Product State simulator which is more efficient for states with low entanglement [24]; a sixty-three qubit

extended Clifford simulator [25]; a thirty-two qubit Schrödinger wave function simulator that computes

the wave fucntion of the state vector as instructions are applied; and a thirty-two qubit general-purpose

simulator that choses the simulation method based on the input circuit. All these systems can be freely

accessed from Qiskit using the IBM Quantum API provided the access token generated at [15].
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The QFT is a basis transformation algorithm that acts as the anchor for many quantum algorithms

by facilitating the transition from the computational basis to the Fourier basis while also allowing phase

estimation. This quantum algorithm is an efficient implementation of the discrete Fourier transform in a

quantum computer.

On this chapter, the quantum version of the Fourier transform, as well as the inverse Fourier trans-

form, will be deduced, implemented and finally validated by being run on IBM’s quantum computers and

quantum simulators

4.1 Quantum Fourier Transform

The DFT takes an input vector of complex numbers (x) and outputs a transformed vector of complex

numbers of the same length (y).

yk =
1√
N

N−1∑
j=0

xje
2πijk/N . (4.1)

The QFT is the quantum implementation of equation (4.1); instead of complex numbers it operates

on quantum states. An arbitrary quantum state
N−1∑
i=0

xi |i〉 is mapped to the state
N−1∑
i=0

yi |i〉 which when

applied to equation 4.1 can be written as

|x〉 7→ 1√
N

N−1∑
y=0

e2πixy/N |y〉 . (4.2)

It is important to note that the quantum state |x〉 in equation 4.2 should be written in a n-base notation

representative of the quantum system. In this case, the quantum states are represented with a binary

notation with each qubit corresponding to a single bit, x = x1x2...xn. Given the relation between a

decimal and a binary number,

(y)10 = 2n−1(y1)2 + 2n−2(y2)2 + ...+ 20(yn)2 ≡ (y)10 =

n∑
k=1

(yk)22
n−k. (4.3)

The DFT transforms a vector of complex numbers into another vector of the same size, typically

a vector is composed by N equidistant samples of some arbitrary function. When representing the

quantum states using binary notation, the maximum number of representable states is given by 2n

where n is the total number of qubits in the system. By replacing this value in equation 4.1,

|x〉 7→ 1√
2n

2n−1∑
y=0

e2πixy/2
n

|y〉 (4.4)

and rewriting equation 4.3 to get
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(y/2n)10 =

n∑
k=1

(yk)2/2
k, (4.5)

it’s possible to derive an expression for the mapping of the QFT in the binary case by combining

equations 4.4 and 4.5. Let QFT(|x〉) be the quantum Fourier transform of the state |x〉 where x =

xn...x2x1, this transformation can be described by:

QFT (|x〉) = 1√
N

N−1∑
y=0

e
2πix

n∑
k=1

yk/2
k

|y〉 . (4.6)

Equation 4.6 can be further simplified through algebraic manipulation (appendix A) to the expression

considered by Nielsen, Michael A., and Isaac Chuang as the definition of QFT in [12],

QFT (|x〉) = 1√
N

[
(|0〉+ e2πi0.x1 |1〉)⊗ (|0〉+ e2πi0.x2x1 |1〉)⊗ · · · ⊗ (|0〉+ e2πi0.xn...x2x1 |1〉)

]
. (4.7)

The first term of equation 4.7 corresponds to the state of the most significant bit of |x〉 and the last term

to the least significant one.

4.2 Circuit Design

To ensure that the QFT is unitary the circuit should be designed using only unitary gates. A simplified

expression of the function to implement allows a better view of the necessary gates. Looking at 4.7 it’s

noticeable that every qubit suffers the same modifications differing only in the value of the phase so, it is

easier to determine the circuit by analysing a single qubit and then replicating the process to the other

ones. Isolating the last qubit from 4.7 results in

1√
2
(|0〉+ e2πi0.xn...x2x1 |1〉), (4.8)

where the 1√
2

in 4.8 comes from the factor 1√
N

and N = 2n. This equation can be further simplified by

decomposing the binary fractional notation in the exponent, originating,

1√
2
(|0〉+ e2πi(

x1
2n+

x2
2n−1 +...+ xn

21
) |1〉). (4.9)

This simplified expression is very similar to the implemented by the Hadamard Gate, differing only in

the phase. The phase is depended on the other qubits, so a circuit to implement this function can be

achieved by utilizing Hadamard Gates (equation 4.10) and controlled rotations with different amplitudes

(equation 4.11). The layout of such circuit is shown in figure 4.1.
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Figure 4.1: Circuit to implement QFT.

H |xk〉 =
1√
2
(|0〉+ eπixk |1〉) (4.10)

P (k) =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
2πi

2k

 (4.11)

For the last qubit, after applying the Hadamard gate, it is transformed into

1√
2
(|0〉+ e

2πixn
2 |1〉). (4.12)

After that, qubit the last qubit suffers n−1 rotations controlled by the other qubits, the amplitude of these

rotations depends on the index difference between the target and the control qubit. The transformation

applied by all the rotations to the state produced in 4.12 makes the state

1√
2
(|0〉+ e

2πi
2n x1+

2πi
2n−1x2+...+

2πi
2 xn |1〉) = 1√

2
(|0〉+ e2πi0.xn...x2x1 |1〉). (4.13)

The correctness of the circuit can be confirmed by comparing the final state of the last qubit (MSB)

described in 4.13 with the definition of the QFT (equation 4.7). It can be seen, that the final state of

the last first qubit doesn’t match the target state but instead matches the intended final state of the first

qubit (LSB). This can be easily fixed by swapping the qubits at the last stage of the circuit. Adding these

swaps to the circuit changes its layout to the one represented in figure 4.2.

4.3 Circuit’s Implementation

Having the gates necessary to build the circuit been determined, the circuit was implemented using

Qiskit. After implementation, Qiskit’s integration with IBM provide a way to simulate the circuit, run on a

quantum computer, and check whether the produced results correspond to the expected ones. Given the

number of users daily running programs on IBM’s quantum computers and the small size of the circuit,
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Figure 4.2: Circuit to implement QFT with swaps.

the circuit was first be tested on Qiskit’s Aer simulator. Measuring a qubit on a quantum computer causes

its state to collapse. However, by using a quantum simulator it is possible to access and represent the

final state of the qubits using a state vector representation, in the Bloch sphere. Both on Qiskit simulators

as well as on IBM quantum computers and quantum simulators, all qubits are initialized in the state |0〉

so, to simulate the QFT of a chosen state it is first necessary to force the qubits to that state, which will

require adding more quantum gates to the previous design.

Applying the Pauli-X gate to a qubit forces a rotation of π around the x-axis, flipping the qubits from

|0〉 to |1〉, making it ideal to manipulate the initial state into the desired value. For instance, forcing the

initial state |x〉 = |1110〉 = |10112〉 can be achieved by applying a Pauli-X gate to qubits q0, q1 and q3.

Applying these gates before the circuit for the QFT results in figure 4.3 and, simulating the circuit using

Qiskit Aer produces the state vector represented in figure 4.4.

Figure 4.3: Circuit implemented to simulate QFT of |1011〉.

Figure 4.4: State vector correspondent to QFT(|1011〉).

The correctness of state vector in figure 4.4 can be confirmed by calculating the expected states pro-
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duced by applying the QFT to |1011〉. This result can be obtained by solving equation 4.7 for x = 1011.

q0 =
1√
2
(|0〉+ e2πi0.1011 |1〉) = 1√

2
(|0〉+ e

11
8 π |1〉)

q1 =
1√
2
(|0〉+ e2πi0.011 |1〉) = 1√

2
(|0〉+ e

3
4π |1〉)

q2 =
1√
2
(|0〉+ e2πi0.11 |1〉) = 1√

2
(|0〉+ e

3
2π |1〉)

q3 =
1√
2
(|0〉+ e2πi0.1 |1〉) = 1√

2
(|0〉+ eπ |1〉)

(4.14)

Comparing the state for each qubit in equation 4.14 with the respective Bloch sphere representation of

each qubit in figure 4.4 it is shown that the circuit from figure 4.3 applies the QFT, as intended.

After confirming the correctness of the circuit using a quantum simulator, the circuit was tested in a

real quantum device. However, when measuring a state, quantum computers can only read either |0〉

or |1〉 collapsing states in superposition. This poses a problem for the implemented circuit, because all

the qubits in the expected output state are in a superposition state. In order to properly test it, the circuit

had to be build in such way that the output state would be composed only of qubits in the basis states.

This was achieved by, instead of testing the QFT which takes a basis state to a superposition state,

using the inverse QFT with a prepared superposition state as input producing as output a basis state.

Considering the properties of the quantum gates, the inverse QFT can be applied simply by inverting

the circuit that applies the QFT, resulting in the one represented in figure 4.5. Since this circuit applies

the inverse QFT, using the state vector from figure 4.4 as input should produce the state |1011〉. To

prepare the desired input, to each qubit will be applied an Hadamard gate to force it to the state |+〉, and

a rotation corresponding to the angles calculated in equation4.14. Meaning that, after the Hadamard

gate, qubit 0 will be applied a rotation of 11
8 π, qubit 1 a rotation of 3

4π, qubit 2 a rotation of 3
2π and qubit

3 a rotation of π. To get the final result, each qubit will also need to be measured and the result stored

in a classical buffer. This can done by adding a measurement gate to each qubit at the end of the circuit

description. The circuit that prepares the initial state and applies the inverse QFT and measures the

output is represented in figure 4.6.

Figure 4.5: Circuit to implement the Inverse Quantum Fourier Transform.

Given the probabilistic nature of quantum computers, the circuit needs to be ran multiple times. The

26



Figure 4.6: Circuit to test the QFT on a real device.

histograms represented in figure 4.7 contain the results obtained from running the circuit 2048 times in

three different quantum computers from IBM. These histograms show the probability of measuring each

possible value of x. The fact that the probability of measuring 1011 is not 1, evidentiates the importance

of running the circuit multiple times.
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(a)

(b)

(c)

Figure 4.7: QFT simulated on a real quantum computer.(a) Histogram produced by running the circuit 2048 times
on ibm q athens; (b) Histogram produced by running the circuit 2048 times on ibm q vigo; (c) Histogram
produced by running the circuit 2048 times on ibm q valencia;
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Shor’s Algorithm is an algorithm proposed by Peter Shor which allows the factorization of large prime

numbers in polynomial time using a quantum computer [13]. It enables to break RSA based cryptosys-

tems which is widely used to secure data sent via insecure means of communication such as the internet.

Shor’s algorithm for factoring can be split into two problems: reducing the problem to an order-finding

problem, which can be done on a classical computer using the Euclidean Algorithm; and the second by

is using a quantum algorithm to solve the order-finding problem. The algorithm is given in [12] as:

1. If N is even, return the factor 2.

2. Determine whether N = pq for integers p ≥ 1 and q ≥ 2, and if so return the factor p.

3. Randomly choose x in the range 1 to N-1. If gcd(x, N) > 1 then return the factor gcd(x, N).

4. Use the order-finding subroutine to find the order r of x modulo N.

5. If r is even and xr/2 = - 1(mod N) then compute gcd(xr/2 − 1, N) and gcd(xr/2 + 1, N), and test to

see if one of these is a non-trivial factor, returning that factor if so. Otherwise, the algorithm fails.

In this chapter, Shor’s Algorithm will be explained and implemented using Qiskit [18]. Various opti-

mizations will be discussed, implemented and lastly compared.

5.1 Shor’s Algorithm in classical computation

Most internet protocols rely on asymmetric encryption to establish secure connections which are based

on the difficulty of factoring large numbers. An algorithm that solves this factoring problem is Shor’s

Algorithm, which factors a number by guessing one of it’s factors and improving that guess in case it is

not. Shor’s Algorithm starts by taking a random guess g and checking if it shares a factor with the large

number N using the Euclid’s Algorithm [26]. If that is the case, the other factor can be obtained by simply

dividing N by g. However, since N is the product of two very large ”random” prime numbers [27] finding

a factor is extremely unlikely [28] and so, the algorithm will instead transform g into a better guess. This

new guess comes from the application of Euler’s theorem [29] to the relation between g and N: g is not

a factor of N they are coprime and through Euler’s theorem can be written as,

g,N
(coprime)

−→ gp = m ·N + 1 ≡ (gp/2 + 1)(gp/2− 1) = m ·N. (5.1)

According to equation 5.1, the improved guess is of the form gp/2± 1, and the only thing left to do is

determine the value of p. By taking the relation gp = m ·N + 1 from 5.1 it’s possible to write a function

f(x) = gx mod N . This function is periodic, with period p, and the period is given by the smallest

integer larger than zero such that gp mod N = 1. Finding p is not an easy task as computing all images
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of f(x) for a large value of N is extremely costly. At time of writing the recommended key size for RSA

encryption is 2048 bits [30] and the biggest size RSA publicly broken is the RSA-250 (829 bits) [28].

5.2 Shor’s Algorithm in quantum computing

Shor’s Algorithm classical implementation does not pose a threat to modern cryptography, given the

immense amount of computational time required to factor a large number. This problem comes from

the fact that finding the periodicity of f(x) = gx mod N requires computing separately each value of

f(x). However, in a quantum system this issue can be overcome thanks to quantum superposition and

interference. Quantum superposition makes it possible to write the qubits state as a linear combination

of states, allowing the computation of all the images of f(x) = gx mod N at the same time. Given that

f(x) is periodic, the produced state is composed of equal values separated by the period. When applied

the QFT it results in a state composed by the QFT of every image of f(x), that thanks to quantum

interference add together resulting in a state that contains the frequency at which each value repeats,

|1/p〉.

5.2.1 Circuit Design

Shor’s algorithm isn’t purely quantum. As it was aforementioned, it is composed by Euclid’s algorithm

which classical implementation is already efficient at determining whether or not two numbers share a

factor. As such, the quantum circuit will only be required to implement step 4 of the algorithm: ”use the

order-finding subroutine to find the order r of x modulo N.”. Looking to step 4, it uses a random guess

g < N and computes f(x) = gx mod N to find its period. As described by Peter Shor in [13], the first

step of the order-finding algorithm is to find q, a power of 2 with N2 6 q < 2N2, and put the register

x in a uniform superposition state representing all numbers modulo q, which will constitute the domain

of f(x) : x ∈ [0, q − 1]. To store this information the register containing x, denoted by |x〉, has to be

composed by log2(q) qubits which, taking into account the possible values of q, will be initialized with a

size of 2n qubits, where n = blog2(N)c+ 1.

Subsequently,, it is necessary to put |x〉 in a uniform superposition of states to represent all numbers

x ( mod q), this can was done by applying an Hadamard gate to every qubit of |x〉, as it can be seen in

the circuit diagram represented in figure 5.1. Doing this, leaves the machine in the state

1
√
q

q−1∑
x=0

|x〉 |0〉 . (5.2)

Having defined all possible values of x, the next step is to compute f(x) = gx mod N . By looking at

figure 5.1 one can easily deduce that f(x) is computed by the gate Ux,N . This gate takes the state from
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equation 5.2 to

1
√
q

q−1∑
x=0

|x〉 |(w · g)x mod N〉 , (5.3)

By using a Pauli-X gate on the least significant qubit of |w〉, it states changes from |0〉 to |1〉 and

equation 5.3 becomes

1
√
q

q−1∑
x=0

|x〉 |gx mod N〉 . (5.4)

Now what is left is to extract the periodicity of f(x) from the current state by applying an inverse QFT

to |x〉. The inverse QFT is given by

QFT † |x〉 = 1√
N

N−1∑
y=0

e−
2πi
N xy |y〉 , (5.5)

which when applied to the state produced in equation 5.4 creates the state:

QFT † |x〉 |gx mod N〉 = 1
√
q

q−1∑
x=0

1
√
q

q−1∑
y=0

e−
2πi
q xy |y〉 |gx mod N〉 = 1

q

q−1∑
x=0

q−1∑
y=0

e−
2πi
q xy |y〉 |gx mod N〉 .

(5.6)

5.2.2 The Ux,N gate

As explained in the previous section, the circuit designed to implement the order-finding subroutine of

Shor’s Algorithm is composed by an array of Hadamard gates acting on the |x〉 register, a Ux,N gate that

applies f(x) = gx mod N and the QFT circuit described and implemented in chapter 4 to determine

the period of the function. Since both the Hadamard gate and the QFT have already been studied in

previous chapters, this section will focus on implementing and described the Ux,N gate. This gate’s

implementation is based on the circuit described by Stéphane Beauregard [31].

The first element of the circuit to built the Ux,N gate is an adder gate that takes the QFT of a quantum

register |b〉 and produces the QFT of the sum of that register to a given constant a. This transformation

can be described as

QFT (|b〉)→ QFT (|a+ b〉). (5.7)

The principle behind equation 5.10 is that adding two QFTs corresponds just to add the phases of

each individual qubit. This can be confirmed by taking, for instance, the QFT of |4〉 and |7〉 represented
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Figure 5.1: Circuit built to implement the order-finding subroutine of Shor’s Algorithm for n = 3.

as a state vector in figure 5.2 and figure 5.3, respectively, and adding the phases of the qubits. The

phases for each qubit can be calculated as demonstrated in equation 4.14, or simply inferred from

figures 5.2 and 5.3 and represented as α|Sn〉, where |Sn〉 is the nth qubit of state S, resulting in equation

5.8.

α|40〉 =
π

2
, α|41〉 = π, α|42〉 = 0, α|43〉 = 0,

α|70〉 =
7π

8
, α|71〉

7π

4
, α|72〉 =

3π

2
, α|73〉 = π.

(5.8)

Figure 5.2: Quantum Fourier Transform of |4〉.

Adding these angles pairwise results in the angles correspondent to QFT(|11〉) as can be concluded

by comparing the phases from equation 4.14 with the angles in equation 5.8.
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Figure 5.3: Quantum Fourier Transform of |7〉.

α|110〉 =
π

2
+

7π

8
=

11π

8
,

α|111〉 = π +
7π

4
=

3π

4
,

α|112〉 = 0 +
3π

2
=

3π

2
,

α|113〉 = 0 + π = π.

(5.9)

Given that property, the adder was made by taking QFT(|b〉) and applying to each qubit a phase

rotation corresponding to the phases of QFT(|a〉), as represented in figure 5.4. This phases can be

classically calculated since a is a given constant and not a quantum register.

Figure 5.4: Quantum circuit for addition in the Fourier space, with a=7.

To test this adder gate, a circuit was built using: a circuit composed only by Pauli-x gates that forces

a desired state to |b〉; the circuit to perform the QFT of |b〉; the adder gate that adds a to b; and the circuit

for the inverse QFT that puts the resulting state into the basis form allowing for it to be measured. This

circuit, represented in figure 5.5 was tested using IBM qasm simulator for the values of a and b used to

calculate equation 5.9, respectively, 4 and 7. Figure 5.9 contains the state vector corresponding to the

output of the simulation. As expected, the final state corresponds to |b3...b0〉 = |1011〉 = |11〉4. It is also

important to note that, since the adder gate is composed only by unitary gates, the inverse of this gate
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Figure 5.5: Quantum circuit to test the adder gate.

Figure 5.6: State vector produced by adder gate where qubit 3 represent the most significant bit of |b〉.

can be build. However, unlike when adding a and b, subtracting them might result in a negative number

and as such, it maps in equation 5.10.

QFT (|b〉)→

{
QFT (|b− a〉), b > a.

QFT (
∣∣2n+1 − a+ b

〉
), b < a.

(5.10)

A controlled or doubly controlled version of the adder can also be made using, instead of normal rotation,

single our doubly controlled phase shift gates, respectively.

Using the implemented adder (figure 5.4) it is possible to build a modular adder. Adding two numbers

modulo N when both of them are smaller than N can be easily done by summing them together and,

if the result surpasses N , subtracting N from it. The circuit for the modular adder needs an extra bit,

set to |0〉, in order to perform the comparisons. This gate will also be designed with two additional

control qubits that will be needed at a later stage of building the Ux,N gate. It is also important to notice

that, to allow chaining multiple modular adders together, the comparison bit will need to be restored

to its initial state. To design this circuit, both the adder gate and its inverse, used for subtraction, are

needed. This circuit was designed using n + 4 qubits; two used as control qubits, n + 1 to store a + b

accounting for overflowing and a clean qubit used to perform comparisons. The full architecture of the

circuit implemented to perform modular addition is represented in figure 5.7.

By assuming |q00〉 |q10〉 = |11〉, the circuit in figure 5.7 starts by applying an adder gate to the register

containing QFT (|b〉) switching the state as defined in equation 5.10. Note that QFT (|b〉) is only stored in

the first five qubits of register |b〉6 as |b5〉 is used to do the comparison. After the addition, N is subtracted

from the resulting state, originating the state in equation 5.11.
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Figure 5.7: Quantum circuit for the modular addition.

|b〉5 |b5〉 = QFT (|a+ b−N〉) |0〉 . (5.11)

If (a + b) > N the state from equation 5.18 corresponds to |(a+ b) mod N〉. However, if (a + b) < N

the state corresponding to |(a+ b) mod N〉 is simply |a+ b〉 and as such N needs to be added back

this state. The way used to compare N with (a+b) was by checking the most significant bit of |a+ b−N〉

to see if it is |0〉 and so (a + b) > N , or if it is |1〉 and (a + b) < N . Since measuring the qubit would

collapse its state, the approach taken was to used it to control a C-NOT targeting |b5〉. This way, if

(a + b) < N , the comparison qubit |b5〉 will be flipped to |1〉 and used to control the adder that sums

N back to a + b − N , otherwise, the bit is not flipped and N doesn’t need to be added back. Since

the register contains QFT (|a+ b−N〉) the inverse QFT needs to be applied first in order to use it as a

control qubit. Equation 5.12 summarizes the behaviour of the circuit for the two possible outcomes.

{
|b5〉 = 1 if (a+ b) < N

N is added back−−−−−−−−−→ |b〉5 |b5〉 = QFT (|a+ b〉) |1〉 = QFT (|(a+ b) mod N〉) |1〉 ,
|b5〉 = 0 if (a+ b) > N

N is not added back−−−−−−−−−−−→ |b〉5 |b5〉 = QFT (|a+ b−N〉) |0〉 = QFT (|(a+ b) mod N〉) |0〉 .
(5.12)

After computing |(a+ b) mod N〉 all that’s left is to restore |b5〉 to |0〉, which is only needed when
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the state is QFT (|a+ b〉) |1〉. By subtracting a from the states described in equation 5.12 equation 5.13

is created. This equation shows that, by doing so, one is left with either b or b − N , a positive and a

negative number, respectively. As such, the signal qubit can again be used to control the flipping of the

comparison qubit.

{
|b〉5 = a+ b− a = b if |b5〉 = 1,

|b〉5 = a+ b−N − a = b−N if |b5〉 = 0.
(5.13)

This time, however, |b5〉 needs to be flipped when |b〉5 = b - which is a positive number -, so before and

after applying the C-NOT gate, a Pauli-X gate is applied to |b4〉. This ensures that, when the signal qubit

is |1〉, and therefore the number is negative, |b4〉 is not flipped, and when the signal is |0〉 it is flipped.

After that. a is added back, producing the final state described in equation 5.14.

|b〉5 |b5〉 = QFT (|(a+ b) mod N〉) |0〉 . (5.14)

For the test of the modular adder, a circuit similar to the one used for testing the adder gate was

used, as expressed in figure 5.8. This gate was simulated, in the same quantum simulator as the adder

gate, for N = 15, b = 4 and a = 16 which is supposed to produce (4+ 16) mod 15 = 5. This means that

for the input |q0〉 |q1〉 |b〉 = |1〉 |1〉 |000100〉 the circuit is expected to produce |q0〉 |q1〉 |b〉 = |1〉 |1〉 |000101〉.

Figure 5.9 shows that the resulting state corresponds to the expected result.

Figure 5.8: Quantum circuit to test the modular adder.

Every number can be written in the form of a sum of coefficients multiplied by the corresponding base

power, for instance, 23610 = 2×102+3×101+6×100. A multiplication of two numbers can be easily done

by multiplying each of those sums by the other number used in the multiplication (e.g.23610 × 1410 =

14 × 2 × 102 + 14 × 3 × 101 + 14 × 6 × 100). As such, the multiplication of an arbitrary number x by an

arbitrary constant a can be defined by,
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Figure 5.9: State vector produced by modular adder gate, where qubit 0→ |q0〉, qubit 1→ |q1〉 and qubit 2:7→ |b〉
with qubit 7 representing the most significant bit of |b〉.

x · a = 2n−1axn−1 + 2n−2axn−2 + · · ·+ 20ax0, (5.15)

where x = xn−1xn−2 · · ·x0 = 2n−1xn−1 + 2n−2xn−2 + · · ·+ 20x0.

Given the relation described in equation 5.15, it is possible to construct a modular multiplication gate

using the previously described modular adder gate. Taking a closer look at that referred equation it is

noticeable that, for j ∈ [0, n − 1], every time xj = 0 → 2jaxj = 0 and so that term of the addition is null

meaning that, one can instead use xj to control whether or not the term 2ja is added into the equation.

Taking this into account, the modular multiplier was built using n modular adder gates in series and

each controlled by a different qubit of |x〉. This way, by classically calculating 2ja, each gate produces

QFT (
∣∣(b+ 2jaxj) mod N

〉
), where j is the order of the qubit of |x〉 used as control. Drawing this circuit

using Qiskit produces the diagram in figure 5.10.

Figure 5.10: Quantum circuit for the modular multiplier.

To analyze the behaviour of the modular multiplier circuit it is important to note that, one adder gate

maps

|xj〉 |b〉 → QFT (
∣∣(b+ 2jaxj) mod N

〉
), (5.16)
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and, by connecting them in series, the output of one is the input of the next, making the final state for

the circuit of figure 5.10

|x〉 |b〉 = QFT (
∣∣(((((b+ 20ax0) mod N) + 21ax1 mod N) + 22ax2 mod N) + 23ax3 mod N)

〉
).

(5.17)

Furthermore, since applying the modulus after every addition or simply at the end of all produces the

exact same result, the expression from 5.18 can be written as

|x〉 |b〉 = QFT (
∣∣((b+ 20ax0 + 21ax1 + 22ax2 + 23ax3) mod N)

〉
) = QFT (|(b+ a · x)modN〉). (5.18)

To test the operation of the modular multiplier, the circuit in figure 5.11 was used. The simulation was

ran in a quantum simulator for N = 15, b = 6, a = 2 and x = 5 and the ensure the gate operation the

control qubit |c〉1 is set to |1〉1. The result from this simulation is the state vector represented in figure

5.12.

Figure 5.11: Quantum circuit to test the modular multiplier.

The correct behaviour of the gate can be confirmed by comparing the state vector from figure 5.12

with the expect result |c〉1 |x〉4 |b〉6 → |1〉1 |5〉4 |(6 + 2 · 5) mod 15〉6 = |1〉1 |5〉4 |1〉6. Unfortunately, this
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Figure 5.12: State vector produced by modular multiplier where, qubit 0 → |c0〉, qubit 1:4 → |x〉 and qubit 5:10
→ |b〉 with qubits 4 and 10 representing the most significant bit of |x〉 and |b〉 respectively.

gate is a modular multiplier so, instead of mapping |x〉 |b〉 → |x〉 |b+ a · x mod N〉 it needs to map

|x〉 → |a · x mod N〉. This can easily be achieved by having b = 0 however, the result of the computation

is stored on the register |b〉. Removing |b〉 from the equation can be done by treating it as an clean ancilla

register -a register with a known state used only to provide qubits to calculation whose initial state must

be preserved-. The computed value of |a · x mod N〉 can easily be stored in |x〉 by swapping the values

from |x〉 and |b〉 using swap gates, but this leaves |b〉 storing the value of x. This can be solved by

applying the inverse of the modular multiplier gate to the circuit as is shown in equation 5.19. Doing

this creates a circuit that performs the modular multiplication of its input x by a constant a and stores

the result in the input register, the Ua gate. This steps were implemented using Qiskit and the resulting

circuit is the diagram in figure 5.13.

|x〉 |0〉 multiplier−−−−−−−→ |x〉 |(ax) mod N〉 swap−−−→ |(ax) mod N〉 |x〉

|(ax) mod N〉 |x〉 inv multiplier−−−−−−−−−→ |(ax) mod N〉
∣∣(x− a−1ax) mod N

〉
|(ax) mod N〉

∣∣(x− a−1ax) mod N
〉
= |(ax) mod N〉 |0〉 (5.19)

Similarly to the other gates, the Ua gate was tested in a quantum simulator using the circuit in figure

5.14. The state vector produced for N = 15, b = 0, a = 4 and x = 8 is represented in figure 5.15.

The correct operation of the gate can be confirmed by comparing the expected result |(ax) mod N〉 =

(4× 8) mod 15 = 2 with the state vector from figure 5.15.

However, the function applied by the Ux,N gate is not modular multiplication but modular exponenti-

ation, in the form of f(x) = gx mod N . This can be accomplished using the same controlling approach

as for the modular multiplier, since:

|gx mod N〉 =
∣∣∣g20x0+21x1+···+2n−1xn−1 mod N

〉
=

=
∣∣∣(((g20x0 mod N)g2

1x1 mod N) · · · g2
n−1xn−1 mod N)

〉
. (5.20)

Being g a classical constant, g2
j

can be computed classically and as such, the Ux,N gate can be
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Figure 5.13: Quantum circuit for the modular multiplier gate acting on the input register.

Figure 5.14: Quantum circuit to test the modular multiplier gate acting on the input register.
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Figure 5.15: State vector produced by the modular multiplier gate acting on the input register where, qubit 0→ |c0〉,
qubit 1:4 → |x〉 and qubit 5:10 → |b〉 with qubits 4 and 10 representing the most significant bit of |x〉
and |b〉 respectively.

implemented by applying the Ua gates acting on the input register |w〉, and controlled by |x〉 making the

circuit represented in figure 5.16.

Figure 5.16: Quantum circuit for the Ux,N gate

The behaviour of the Ux,N can be tested using the circuit in figure 5.17. The Ux,N computes f(x) =

(w · g)x mod N instead of f(x) = gx mod N . This is overcome by setting |w〉 to |1〉 before applying the
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gate, hence the Pauli-X gate in the circuit used for simulation. Running the circuit in a quantum simulator

for N = 15, x = 4 and g = 7, produced the state vector in in figure 5.18 which, when compared with the

expected value
∣∣74 mod 15

〉
= 1 leads to the conclusion that the gate is working properly.

Figure 5.17: Quantum circuit to test the Ux,N gate

Figure 5.18: State vector produced by the Ux,N gate where, qubit 0 → |c0〉, qubit 1:4 → |x〉 and qubit 5:10 → |b〉
with qubits 4 and 10 representing the most significant bit of |x〉 and |b〉 respectively.

Concluded the construction of the Ux,N all the requirements to build the order-finding subroutine

circuit are met and the circuit from figure 5.1 can be built and tested.

5.2.3 Circuit Implementation

To implement the circuit one needs to first choose the values of N and g. Since Shor’s algorithm main

purpose is to factor numbers which are a product of two prime numbers, N equal to fifteen is the smallest

odd number that is also the product of two different prime numbers - three and five. Any other number

meeting the same criteria could have been chosen, but fifteen being the smallest uses less qubits and
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as such requires smaller and faster circuits. Additionally, the equations describing the circuit will also be

smaller, providing a better reading. For g, any number smaller than fifteen and bigger than one is good,

and as such, two was chosen. Having N been chosen, q can be determined by finding the power of two

such that 225 6 q < 450, meaning q = 256 = 28 and so n = 4. Since the circuit uses 4n + 2 qubits, the

total amount of qubits required to build the circuit sums up to eighteen. Unfortunately, this conclusion

means that the circuit cannot be tested on a real quantum computer, as as the maximum number of

available qubits from IBM Quantum Experience is five. However, IBM also provides a set of advanced

cloud-based quantum simulators with up to five thousand qubits which will be used instead to make the

essential test.

Figure 5.19 illustrates the architecture of the circuit implemented to compute the order-finding sub-

routine of Shor’s algorithm for N = 15. In this figure there are also four vertical lines representing

different moments in time (t0, t1, t2 and t3), which are used to represent the state of the circuit in those

given moments. For instance, the state |t0〉 corresponds to the state |x〉 |w〉 in the moment t0, the initial

state of the circuit.

Figure 5.19: Circuit to implement order-finding subroutine of Shor’s Algorithm for N=15.

It is also important to notice that, although the circuit requires 4n+2 qubits, the equations describing

the behaviour of the circuit will only use 2n+2 qubits. As explained by Gidney [32], the maximum period

of a number N with n bits is given by 2n and only one sample is required to determine the periodicity
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using continued fractions. Yet, for huge periods, the fractions start to get close together urging the need

of having a frequency space large enough to distinguish those samples. This space can be achieved

using an input register of 2 ∗ log2(P ) qubits, where P is the maximum period of N, making it necessary

to represent |x〉 using 2 ∗ log2(2n) = 2n qubits, as referred in the algorithm description. However, in this

case, since the number to factor is small, no overlapping of frequencies exist and as such, to provide a

better readability, the register will be of n qubits and the states will be represented in decimal with the

size of the register in subscript, (e.g. state |0101〉 is represented by |7〉4).

As all qubits are initialized in the state |0〉, the initial state is given by

|t0〉 = |x〉4 |w〉6 = |0〉4 |0〉6 . (5.21)

The first step of the order-finding is to apply an Hadamard gate to every single qubit of the first

register, which causes the state to shift to an uniform superposition. At the same time, a Pauli-X gate

is applied to the least significant qubit of the second register causing it to go from |0〉 to |1〉. Given the

action of these gates, the state goes from equation 5.21 to

|t1〉 =
1√
16

15∑
x=0

|x〉4 |1〉6 ≡
1

4

[
|0〉4 + |1〉4 + |2〉4 + · · ·+ |15〉4

]
|1〉6 . (5.22)

From here the gate Ux,N is applied to equation 5.22 taking the first register as an input and producing

in the second register the value of the function f(x) = 2x mod 15 leading to the state:

|t2〉 =
1

4

[
|0〉4

∣∣20 mod 15
〉
6
+ |1〉4

∣∣21 mod 15
〉
6
+ · · ·+ |15〉4

∣∣215 mod 15
〉
6

]
, (5.23)

which can be developed to make

|t2〉 =
1

4

[
|00〉4 |1〉6 + |01〉4 |2〉6 + |02〉4 |4〉6 + |03〉4 |8〉6 +

|04〉4 |1〉6 + |05〉4 |2〉6 + |06〉4 |4〉6 + |07〉4 |8〉6 +

|08〉4 |1〉6 + |09〉4 |2〉6 + |10〉4 |4〉6 + |11〉4 |8〉6 +

|12〉4 |1〉6 + |13〉4 |2〉6 + |14〉4 |4〉6 + |15〉4 |8〉6
]
.

(5.24)

Just by looking at the state from equation 5.24, one can immediately see the periodicity of f(x).

Nevertheless, applying the inverse QFT is still needed to extract this information from the state. However,

considering what it means for a state to be in an uniform superposition the state |t2〉 can be simplified

by assuming the second register was measured. Taking an arbitrary basis state |0〉 and putting it into

uniform superposition creates the state:
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|x〉1 =
1√
2

[
|0〉+ |1〉

]
, (5.25)

that when measured, gives either |0〉 or |1〉 with equal probability: measuring collapses the superposition

state and as such, by measuring the the second register of t2 the state collapses, resulting into a simpler

state that will facilitate the calculation of the QFT without impacting the outcome. By analyzing equation

5.24, it is concluded that the second register of t2, |w〉6, can take the values |1〉6, |2〉6, |4〉6 and |8〉6 with

equal probability. By assuming the measurement result was |4〉 the state becomes

|t2〉 =
1

2

[
|2〉4 |4〉6 + |6〉4 |4〉6 + |10〉4 |4〉6 + |14〉4 |4〉6

]
≡ 1

2

[
|2〉4 + |6〉4 + |10〉4 + |14〉4

]
|4〉6 . (5.26)

To extract the periodicity of the function, the inverse QFT,

QFT † |x̃〉 = |x〉 = 1√
N

N−1∑
y=0

e−
2πi
N xy |y〉 , (5.27)

is applied to the first register transforming the state |t2〉 in:

|t3〉 = QFT †(|x〉4) |4〉6 ≡
1

2

[
QFT † |2〉4 +QFT † |6〉4 +QFT † |10〉4 +QFT † |14〉4

]
|4〉6 . (5.28)

By substituting the values of |x〉 in equation 5.27, every inverse QFT from equation 5.28 can be

written as:

QFT † |2〉 = 1

4

15∑
y=0

e−
πi
8 2y |y〉

QFT † |6〉 = 1

4

15∑
y=0

e−
πi
8 6y |y〉

QFT † |10〉 = 1

4

15∑
y=0

e−
πi
8 10y |y〉

QFT † |14〉 = 1

4

15∑
y=0

e−
πi
8 14y |y〉 .

(5.29)

These equations applied to equation 5.28, provide the inverse Fourier transform of the first register

as:
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QFT † |x〉 = 1

8

15∑
y=0

[
e−

πi
8 2y + e−

πi
8 6y + e−

πi
8 10y + e−

πi
8 14y

]
|y〉4 . (5.30)

Solving these equations is not trivial, it was done in this Thesis by software programmed in python,

producing the results presented on figure 5.20, that when applied to equation 5.30 leads to the final

state:

|t3〉 =
1

8

[
4 |0〉4 + (−4) |4〉4 + 4 |8〉4 + (−4) |12〉4

]
. (5.31)

Figure 5.20: Solution of equation 5.30.

When measuring the first register of |t3〉, the value has an equal probability of being |0〉4, |4〉4, |8〉4 or

|12〉4 and so the histogram from figure 5.21: as explained in [32], through continued fractions, will result

in a period equal to the number of peaks (in this case four).

This implementation of the order-finding subroutine was validated by comparing the result produced

by the circuit with the calculated period. Figure 5.22 shows the histogram built from 2048 measurements

of the first register from figure 5.19 and, as expected, the number of peaks is four. Additionally, the

distance from the peaks of the histogram show that the simplification of using an |x〉 register of size four

for the calculations had no impact on the final result.

5.2.4 Semi-classical implementation

Shor’s algorithm is indeed relevant to the world of quantum computation, being directly tied with cyber

security. However, to factorize big numbers (RSA-2048), there are still a great deal of advances to

be made in the quantum computation area, which can be achieved by either building bigger systems

with many more qubits or optimizing the algorithms to require less qubits. Fortunately, both are being
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Figure 5.21: Expected histogram from measuring state |t3〉.

Figure 5.22: Histogram build from 2048 measurements of the circuit from figure 5.19 for N=15 and g=2 (measure-
ments are summed in groups of 4 to fit the page.)

pursued, such as the semi-classical implementation of the order-finding subroutine of Shor’s algorithm

by S.Parker and M.B.Plenio [33]. This implementation proves that periodicity of f(x) = gx mod N can

be extracted using a single qubit inverse QFT.

Taking a look at the circuit in figure 4.5, it’s noticeable that the inverse-QFT is applied to the target

register by acting on each qubit sequentially using conditional rotations based on values from previous

qubits. It can be inferred that if the values of the previous qubits were known before starting to apply the

gates to a qubit, those controlled rotations could be replaced by single qubit rotations. This is exactly

the principle behind the implementation of a semi-classical sequential QFT.

The circuit in figure 5.1 applies the order finding subroutine or Shor’s Algorithm. The complex gates

of this circuit, namely the Ux,N and the QFT, can be represented by their components, making the circuit

in figure 5.23. Considering an inverse QFT using ”uncontrolled” phase gates, the qubits of register |x〉

in figure 5.23 would be independent of each other, meaning that all the gates acting on one qubit could

be applied without waiting for gates to be applied to the others, allowing the order-finding sub routine

to be built using only one bit to store the value of x. This circuit was implemented by analysing which

gates are applied to each qubit of |x〉 and applying them sequentially to it, measuring the result before
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passing on to the next qubit. This raises a problem, the swap gate applied at the beginning of the inverse

QFT forces an interaction between qubits of |x〉. Since what that gate does is switching the value of two

states before applying them the inverse QFT gates, the problem can be solved by simply applying the

gates that would target the qubit after swapping, to it directly (e.g. instead of swapping x2 and x0 and

applying and Hadamard gate to x0, that can would just be applied to x2). This way, the gates should be

applied from MSB to LSB. After establishing the order at which to apply the gates, it is possible to build

the circuit.

Figure 5.23: Quantum circuit for order-finding subroutine with n = 3.

Using only one qubit for |x〉 makes it impossible to parallelize the circuit, this causes the depth

of the circuit to be equal to the number of used gates, increased by the additional Pauli-X and two

measurement gates required per removed qubit of |x〉. The circuit diagram in figure 5.24 corresponds to

the implementation of the semi-classical order-finding subroutine of Shor’s Algorithm for n = 2. Although

it makes no sense factoring a 2 qubit number, building the circuit for a larger number would make it

impossible to represent. This circuit was build using Qiskit. As usual it starts by defining the size of

the registers, which, for the semi-classical implementation is 1 for |x〉 and 2n + 2 for |w〉. Since this

circuit requires the use of measurements in the middle of the circuit to control other gates, two classical

register were created to store these values, one of size 1, to store the value of the qubit used to control
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the conditional Pauli-X gate ,and another of size 2n, to store the measurements corresponding to all

possible values of x. After defining the size of the register, the gates were applied sequentially starting

with the MSB: an Hadamard gate, the Ua gate, the classically controlled Phase gates and Hadamard

gate corresponding to the inverse QFT, the two measurements and a Pauli-X gate that resets |x〉 to |0〉

in case |1〉 was measured.

Figure 5.24: Quantum circuit for the semi-classical order finding subroutine for n = 2.

To test this implementation, the same code was used to build a circuit to solve the order-finding

subroutine for N = 15 and g = 2 and ran in the same quantum simulator. This was done to ensure

the same conditions were used to test both implementations (quantum and semi-classical) and that,

as such, both would produce the same results. In figure 5.25 is the histogram corresponding to the

measurements resulting from running the semi-classical implementation 2048 times. As expected, the

number of peaks from the histogram is four, just like on figure 5.22, meaning that both implementations

produce the same results.
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Figure 5.25: Histogram build from 2048 measurements of the circuit for the semi-classical implementation with
N=15 and g=2 (measurements are summed in groups of 4 to fit the page).
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6.1 Achievements

The main goal of this thesis was to delve into quantum computing. To achieve that, an extensive study

of the basic principles of quantum computation was made along with a detailed analysis of both the

quantum Fourier transform and the Shor’s algorithm. To provide a better insight on the algorithms’

implementation, a step by step analysis was conducted, always making parallelism between the math-

ematical equations and the corresponding quantum gates. This Thesis also featured a semi-classical

implementation of Shor’s algorithm that, by incorporating classical computing in the circuit design pro-

cess, allowing the number of required qubits to be reduced from 4n + 2 to 2n + 3, roughly half the

amount. Doing this comes with the cost of significantly increasing the quantum volume needed to run

the quantum algorithm, which, just like the number of available qubits, is one of the bottlenecks for the

implementation of quantum circuits.

Running the circuits on IBM’s quantum computers raised some problems. The qubit range of the

available computers was small which forced the simulations to be ran on quantum simulators instead of

real devices. Given of how easy is to use IBM quantum computers and that they are built on a global

network, the amount of users at the same time can be very high making running a simple circuit, which

can be done in a split second, a task that can take hours. Even so, IBM’s Qiskit a is very practical tool

to use and provides graphical representation of circuits and simulation results facilitating their analysis

and test. It works like a descriptive programming language and requires very basic Python knowledge

to use, and, even with a limited number of available qubits for simulation, allows the development and

implementation of quantum algorithms.

As aforementioned, the code for this project was developed in Python programming language. It was

decided that it would be provided for free access and use for future investigation on quantum computing.

The code for all implementations can be found at github.com/goncalobvalentim/fromalgtoimp.

6.2 Future Work

This Thesis serves as a introduction to quantum computing providing the necessary basic knowledge to

pursue further studies in this area. While the QFT and Shor’s algorithm were chosen to be implemented,

there are others algorithms that can use this implementations in their circuit, just like Shor’s uses QFT.

This thesis also showed that optimizing the number of qubits necessary to implement a circuit comes

with the cost of increasing its depth. Another good example of this, is the 2n + 1 qubit implementation

of Shor’s algorithm by Craig Gidney [34], which detailed analysis and implementation using Qiskit could

enrich the set of quantum algorithms implemented with Qiskit.
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A
The definition of Quantum Fourier

Transform

The Quantum Fourier Transform is described by an equation derived from the definition of the Discrete

Fourier Transform and adapted to use quantum states instead of complex numbers. Since, at the time

of writing, there is only a limited amount of unitary quantum gates available, it’s important to, when

designing a quantum circuit to implement some function, manipulate the function’s expression to try and

determine which quantum gates can be used to perform that duty. The QFT expression A.1 can be

simplified in a way that eases the designing of the circuit using some basic algebraic notions.

QFT (|x〉) = 1√
N

N−1∑
y=0

e
2πix

n∑
k=1

yk/2
k

|y〉 (A.1)

Equation A.2 can be achieved by transforming the sum in the exponent of A.1 into a product. Then,

since both quantum states are defined by binary qubits, the state |y〉 can be written as the binary state

|yn...y2y1〉 and the sum split to account for each different qubit, originating A.3 that by expanding the

product results in A.4.
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QFT (|x〉) = 1√
N

N−1∑
y=0

n∏
k=1

e2πixyk/2
k

|y〉 (A.2)

QFT (|x〉) = 1√
N

1∑
y1=0

1∑
y2=0

· · ·
1∑

yn=0

n∏
k=1

e2πixyk/2
k

|yn...y2y1〉 (A.3)

QFT (|x〉) = 1√
N

1∑
yn=0

· · ·
1∑

y2=0

1∑
y1=0

(e2πixy1/2
1

· e2πixy2/2
2

· · · · · e2πixyn/2
n

) |yn...y2y1〉 (A.4)

State |yn...y2y1〉 is a tensor product of each individual qubit |yk〉 and may be rewritten as |yn〉 ⊗

... ⊗ |y2〉 ⊗ |y1〉. This notion can be applied to A.4 and rearranged into equation A.5 making trivial the

expansion of the sums and thus resulting in A.6.

QFT (|x〉) = 1√
N

1∑
yn=0

e2πixyn/2
1

|yn〉 ⊗ · · · ⊗
1∑

y2=0

e2πixy2/2
n−1 |y2〉 ⊗

1∑
y1=0

e2πixy1/2
n

|y1〉 (A.5)

QFT (|x〉) = 1√
N

(|0〉+ e
2πix
21 |1〉)⊗ (|0〉+ e

2πix
22 |1〉)⊗ · · · ⊗ (|0〉+ e

2πix
2n |1〉) (A.6)

Similarly to |y〉, |x〉 is a quantum binary state and so, to improve readability, can be written in binary

fractional notation A.7 resulting in the simplified expression A.8.

|x〉 = |xn...x2x1〉 ∴
x

2k
= 0.xnxn−1...x1 (A.7)

QFT (|x〉) = 1√
N

(|0〉+ e2πi0.x1 |1〉)⊗ (|0〉+ e2πi0.x2x1|1〉)⊗ · · · ⊗ (|0〉+ e2πi0.xn...x2x1 |1〉) (A.8)
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